AQS源码解读
AQS
提供了一个实现阻塞锁和相关的基于FIFO
队列的同步器的框架。该类作为大部分依赖于一个状态字段的同步器的基础。子类必须定义 $protected$ 方法来改变状态,其他方法用于管理队列和实现阻塞机制。子类也可以包含其他状态字段,但必须通过原子性操作维护状态。
1. 成员变量
// 等待队列的头节点,懒加载,只能通过setHead方法修改
private transient volatile Node head;
// 等待队列的尾部,懒加载,只能通过enq方法添加新节点
private transient volatile Node tail;
// 同步状态
private volatile int state;
// 如果超时时间大于该值,中断,单位为纳秒
static final long spinForTimeoutThreshold = 1000L;
2. 内部类Node
static final class Node {
// 节点在共享模式等待的标志
static final Node SHARED = new Node();
// 节点在独占模式等待的标志
static final Node EXCLUSIVE = null;
// 表示线程被取消
static final int CANCELLED = 1;
// 表示线程在释放资源后需要唤醒后继节点
static final int SIGNAL = -1;
// 表示线程在等待condition
static final int CONDITION = -2;
// 共享模式下表示无条件传播
static final int PROPAGATE = -3;
// 等待状态
volatile int waitStatus;
// 前驱节点
volatile Node prev;
// 后继节点
volatile Node next;
// 节点对应的线程
volatile Thread thread;
// 下一个在condition上等待的节点,或者表示共享模式
Node nextWaiter;
final boolean isShared() { return nextWaiter == SHARED; }
final Node predecessor() throws NullPointerException {
Node p = prev;
if (p == null)
throw new NullPointerException();
else
return p;
}
Node() {} // 用于创建头节点或者共享标记
Node(Thread thread, Node mode) {
this.nextWaiter = mode;
this.thread = thread;
}
Node(Thread thread, int waitStatus) {
this.waitStatus = waitStatus;
this.thread = thread;
}
}
3. 获取锁
3.1 独占模式
// 独占模式获取资源,忽略中断,未获取成功则阻塞
public final void acquire(int arg) {
if (!tryAcquire(arg) &&
acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
selfInterrupt();
}
// 尝试以独占模式获取锁,需要在子类中重写
protected boolean tryAcquire(int arg) {
throw new UnsupportedOperationException();
}
// 根据给定模式创建队列节点
private Node addWaiter(Node mode) {
Node node = new Node(Thread.currentThread(), mode);
Node pred = tail;
if (pred != null) {
node.prev = pred;
if (compareAndSetTail(pred, node)) { // 如果在此入队成功,直接返回
pred.next = node;
return node;
}
}
enq(node); // 入队失败,循环直到成功
return node;
}
// 节点入队
private Node enq(final Node node) {
for(;;) {
Node t = tail;
if (t == null) {
if (compareAndSetHead(new Node())) // 队列为空,设置哑节点
tail = head;
} else {
node.prev = t;
if (compareAndSetTail(t, node)) {
t.next = node;
return t;
}
}
}
}
// 自旋获取锁
final boolean acquireQueued(final Node node, int arg) {
boolean failed = true;
try {
boolean interrupted = false;
for (;;) {
final Node p = node.predecessor(); // 获取前驱节点
if (p == head && tryAcquire(arg)) { // 如果没有前驱节点在等待,尝试获取锁
setHead(node);
p.next = null; // 帮助GC
failed = false;
return interrupted;
}
if (shouldParkAfterFailedAcquire(p, node) && // 根据状态判断是否阻塞
parkAndCheckInterrupt())
interrupted = true;
}
} finally {
if (failed)
cancelAcquire(node);
}
}
// 检查和更新获取锁失败的节点状态,true表示需要阻塞
private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {
int ws = pred.waitStatus; // 获取前驱节点状态
if (ws == Node.SIGNAL) // SIGNAL状态下前驱节点释放资源后会通知后继节点,因而可以阻塞
return true;
if (ws > 0) { // 前驱节点被取消
do {
node.prev = pred = pred.prev;
} while (pred.waitStatus > 0); // 寻找最近的一个处于正常状态的节点
pred.next = node;
} else { // 其他状态则设置前驱节点为SIGNAL,令其在释放资源后通知自己
compareAndSetWaitStatus(pred, ws, Node.SIGNAL);
}
return false;
}
// 挂起当前线程
private final boolean parkAndCheckInterrupt() {
LockSupport.park(this);
return Thread.interrupted();
}
// 产生一个中断
static void selfInterrupt() {
Thread.currentThread().interrupt();
}
总结一下 $acquire$ 方法的执行步骤:
- 尝试以独占方式获取锁,成功则直接返回
- 尝试以自旋等待方式获取锁,将节点加入队列
- 在自旋的过程中通过 $shouldParkAfterFailedAcquire$ 方法判断是否需要挂起,如果之间发生了中断,设置中断标志位;
- 自旋获取锁成功,如果发生了中断,通过 $selfInterrupt$ 方法产生一个中断。
3.2 共享模式
// 共享模式获取锁,忽略中断
public final void acquireShared(int arg) {
if (tryAcquireShared(arg) < 0)
doAcquireShared(arg);
}
// 共享模式获取锁,失败时返回负数,0表示获取成功但没有剩余资源,正数表示获取节点成功并且还有剩余资源
protected int tryAcquireShared(int arg) {
throw new UnsupportedOperationException();
}
// 自旋获取锁
private void doAcquireShared(int arg) {
final Node node = addWaiter(Node.SHARED); // 创建节点并入队
boolean failed = true;
try {
boolean interrupted = false;
for (;;) {
final Node p = node.predecessor();
if (p == head) {
int r = tryAcquireShared(arg);
if (r >= 0) {
// 如果存在剩余资源则传播
setHeadAndPropagate(node, r);
p.next = null;
if (interrupted)
selfInterrupt();
failed = false;
return;
}
}
if (shouldParkAfterFailedAcquire(p, node) &&
parkAndCheckInterrupt())
interrupted = true;
}
} finally {
if (failed)
cancelAcquire(node);
}
}
// 设置队列头节点并传播
private void setHeadAndPropagate(Node node, int propagate) {
Node h = head;
setHead(node); // 设置头节点
// 存在剩余资源、头节点为空、处于负状态
if (propagate > 0 || h == null || h.waitStatus < 0 ||
(h = head) == null || h.waitStatus < 0) {
Node s = node.next; // 获取下一个节点
if (s == null || s.isShared()) // 下一个节点为空或者处于共享模式
doReleaseShared(); // 唤醒后继并确保传播
}
}
3.3 其他
// 是否存在等待中的前驱
public final boolean hasQueuedPredecessors() {
Node t = tail;
Node h = head;
Node s;
return h != t && // 队列非空
((s = h.next) == null || s.thread != Thread.currentThread()); // 当前等待节点非当前线程所在节点
}
// 在规定时间内以独占模式获取锁
private boolean doAcquireNanos(int arg, long nanosTimeout)
throws InterruptedException {
if (nanosTimeout <= 0L)
return false;
final long deadLine = System.nanoTime() + nanosTimeout; // 到期时间
final Node node = addWaiter(Node.EXCLUSIVE); // 创建节点并加入队列
boolean failed = true;
try {
for (;;) {
final Node p = node.predecessor(); // 获取前驱
if (p == head && tryAcquire(arg)) { // 前驱为头节点,尝试获取锁
setHead(node);
p.next = null;
failed = false;
return true;
}
nanosTimeout = deadLine - System.nanoTime(); // 计算剩余时间
if (nanosTimeout <= 0L)
return false;
if (shouldParkAfterFailedAcquire(p, node) && // 判断是否应该阻塞
nanosTimeout > spinForTimeoutThreshold) // 超时时间大于阈值(1000),中断
LockSupport.parkNanos(this, nanosTimeout);
if (Thread.interrupted())
throw new InterruptedException();
}
} finally {
if (failed)
cancelAcquire(node);
}
}
// 以独占模式获取锁,可以响应中断
private void doAcquireInterruptibly(int arg)
throws InterruptedException {
final Node node = addWaiter(Node.EXCLUSIVE); // 添加节点
boolean failed = true;
try {
for (;;) {
final Node p = node.predecessor(); // 获取前驱
if (p == head && tryAcquire(arg)) { // 前驱为头节点,尝试获取锁
setHead(node);
p.next = null;
failed = false;
return;
}
if (shouldParkAfterFailedAcquire(p, node) && // 判断是否中断
parkAndCheckInterrupt())
throw new InterruptedException(); // 不再设置中断状态,而是直接抛出线程
}
} finally {
if (failed)
cancelAcquire(node);
}
}
4. 释放锁
4.1 独占模式
// 释放独占模式的锁
public final boolean release(int arg) {
if (tryRelease(arg)) {
Node h = head;
if (h != null && h.waitStatus != 0)
unparkSuccessor(h); // 解除后继的阻塞状态
return true;
}
return false;
}
protected boolean tryRelease(int arg) {
throw new UnsupportedOperationException();
}
// 唤醒后继节点
private void unparkSuccessor(Node node) {
int ws = node.waitStatus; // 获取当前节点状态
if (ws < 0) // 负数则设置为正常状态
compareAndSetWaitStatus(node, ws, 0);
Node s = node.next; // 获取后继
if (s == null || s.waitStatus > 0) { // 后继被取消
s = null;
for (Node t = tail; t != null && t != node; t = t.prev) // 从尾节点开始往前遍历
if (t.waitStatus <= 0) // 最后一个未取消的节点
s = t;
}
if (s != null)
LockSupport.unpark(s.thread); // 唤醒节点
}
4.2 共享模式
// 释放共享模式的锁
private void releaseShared(int arg) {
if (tryReleaseShared(arg)) {
doReleaseShared();
return true;
}
return false;
}
protected boolean tryReleaseShared(int arg) {
throw new UnsupportedOperationException();
}
// 释放共享模式的锁,唤醒后继并且设置为传播状态
private void doReleaseShared() {
for (;;) {
Node h = head;
if (h != null && h != tail) {
int ws = h.waitStatus;
if (ws == Node.SIGNAL) {
if (!compareAndSetWaitStatus(h, Node.SIGNAL, 0)) // 设置正常状态
continue;
unparkSuccessor(h); // 唤醒后继
} else if (ws == 0 && // 已经是正常状态
!compareAndSetWaitStatus(h, 0, Node.PROPAGATE)) // 设置传播
continue;
}
if (h == head) // 设置完成后如果发现头节点改变,重新设置
break;
}
}
5. 内部类ConditionObject
5.1 成员变量
// 队首节点
private transient Node firstWaiter;
// 队尾节点
private transient Node lastWaiter;
// 发生中断,设置该状态位,后续不抛出异常而是产生中断
private static final int REINTERRUPT = 1;
// 发生中断,设置该状态位,后续抛出异常
private static final int THROW_IE = -1;
5.2 阻塞
public final void await() throws InterruptedException {
if (Thread.interrupted()) // 线程中断
throw new InterruptedException();
Node node = addConditionWaiter(); // 添加节点
int savedState = fullyRelease(node); // 释放当前节点所有资源
int interruptMode = 0;
while (!isOnSyncQueue(node)) { // 节点不在等待队列,则在condition的条件队列中
LockSupport.park(this); // 阻塞节点
if ((interruptMode = checkInterruptWhileWaiting(node)) != 0) // 中断状态变化
break;
}
// 唤醒后重新添加到等待队列中
if (acquireQueued(node, savedState) && interruptMode != THROW_IE)
interruptMode = REINTERRUPT;
// 删除非CONDITION节点
if (node.nextWaiter != null)
unlinkCancelledWaiters();
// 如果发生中断,处理中断
if (interruptMode != 0)
reportInterruptAfterWait(interruptMode);
}
// 向等待队列中添加节点
private Node addConditionWaiter() {
Node t = lastWaiter;
if (t != null && t.waitStatus != Node.CONDITION) {
unlinkCancelledWaiters(); // 删除非CONDITION节点
t = lastWaiter;
}
Node node = new Node(Thread.currentThread, Node.CONDITION);
if (t == null)
firstWaiter = node;
else
t.nextWaiter = node;
lastWaiter = node;
return node;
}
// 删除非CONDITION节点
private void unlinkCancelledWaiters() {
Node t = firstWaiter;
Node trail = null;
while (t != null) {
Node next = t.nextWaiter;
if (t.waitStatus != Node.CONDITION) {
t.nextWaiter = null;
if (trail == null)
firstWaiter = next;
else
trail.nextWaiter = next;
if (next == null)
lastWaiter = trail;
} else trail = t;
t = next;
}
}
// 释放节点持有的资源
final int fullyRelease(Node node) {
boolean failed = true;
try {
int savedState = getState(); // 获取当前状态
if (release(savedState)) { // 完全释放锁
failed = false;
return savedState;
} else {
throw new IllegalMonitorStateException();
}
} finally {
if (failed) // 释放失败,取消线程
node.waitStatus = Node.CANCELLED;
}
}
// 节点是否处于等待队列中
final boolean isOnSyncQueue(Node node) {
if (node.waitStatus == Node.CONDITION || node.prev == null) // 如果为CONDITION节点或者首节点
return false;
if (node.next != null) // 如果存在后继,则位于等待队列中
return true;
return findNodeFromTail(node); // 从尾节点查找结点
}
// 检查阻塞过程中的中断情况
private int checkInterruptWhileWaiting(Node node) {
return Thread.interrupted() ?
(transferAfterCancelledWait(node) ? THROW_IE : REINTERRUPT) :
0;
}
// 传输节点到等待队列
final boolean transferAfterCancelledWait(Node node) {
if (compareAndSetWaitStatus(node, Node.CONDITION, 0)) { // 取消CONDITION状态
enq(node); // 加入等待队列
return true;
}
while (!isOnSyncQueue(node)) // 不在等待队列,阻塞
Thread.yield();
return false;
}
// 处理中断
private void reportInterruptAfterWait(int interruptMode)
throws InterruptedException {
if (interruptMode = THROW_IE)
throw new InterruptedException();
else if (interruptMode == REINTERRUPT)
selfInterrupt();
}
5.3 唤醒
// 唤醒最长等待的线程
public final void signal() {
if (!isHeldExclusively())
throw new IllegalMonitorStateException();
Node first = firstWaiter;
if (first != null)
doSignal(first);
}
// 唤醒所有线程
private final void signalAll() {
if (!isHeldExclusively())
throw new IllegalMonitorStateException();
Node first = firstWaiter;
if (first != null)
doSignalAll(first);
}
// 是否被独占
protected boolean isHeldExclusively() {
throw new UnsupportedOperationException();
}
private void doSignal(Node first) {
do {
if ((firstWaiter = first.nextWaiter) == null)
lastWaiter = null;
first.nextWaiter = null;
} while (!transferForSignal(first) &&
(first = firstWaiter) != null);
}
private void doSignalAll(Node first) {
lastWaiter = firstWaiter = null;
// 唤醒并移除所有节点
do {
Node next = first.nextWaiter;
first.nextWaiter = null;
transferForSignal(first);
first = next;
} while (first != null);
}
// 传输节点到等待队列
final boolean transferForSignal(Node node) {
if (!compareAndSetWaitStatus(node, Node.CONDITION, 0)) // 取消CONDITION状态
return false;
Node p = enq(node); // 加入队列
int ws = p.waitStatus;
if (ws > 0 || !compareAndSetWaitStatus(p, ws, Node.SIGNAL)) // 节点被取消或者更改状态失败
LockSupport.unpark(node.thread); // 阻塞节点线程
return true;
}
5.4 其他
public final long awaitNanos(long nanosTimeout)
throws InterruptedException {
if (Thread.interrupted())
throw new InterruptedException();
Node node = addConditionWaiter(); // 添加节点
int savedState = fullyRelease(node); // 释放节点
final long deadline = System.nanoTime() + nanosTimeout; // 计算截止时间
int interruptMode = 0;
while (!isOnSyncQueue(node)) { // 检查节点是否处于等待队列
if (nanosTimeout <= 0L) { // 超时
transferAfterCancelledWait(node); // 传输到等待队列
break;
}
if (nanosTimeout >= spinForTimeoutThreshold) // 剩余时间大于阈值,阻塞
LockSupport.parkNanos(this, nanosTimeout);
if ((interruptMode = checkInterruptWhileWaiting(node)) != 0) // 检查是否出现中断
break;
nanosTimeout = deadline - System.nanoTime();
}
if (acquireQueued(node, savedState) && interruptMode != THROW_IE) // 插入等待队列
interruptMode = REINTERRUPT;
if (node.nextWaiter != null) // 移除非CONDITION节点
unlinkCancelledWaiters();
if (interruptMode != 0) // 处理中断
reportInterruptAfterWait(interruptMode);
return deadline - System.nanoTime();
}