HashMap源码解读
1. 字段
字段设置为 $transient$ ,因为 $HashMap$ 通过 $Object.hashCode(\ )$ 获取哈希值,并通过哈希值与桶个数取模确定对象。$Object.hashCode(\ )$ 是一个本地方法,依赖于JVM
实现,存在跨平台问题,所有 $HashMap$ 在序列化时会先保存所有 $Key$ ,再在反序列化时重新插入。
// 最大容量
static final int MAXIMUM_CAPACITY = 1 << 30;
// 默认负载因子,大小/容量超过这个比例就会扩容
static final float DEFAULT_LOAD_FACTOR = 0.75f;
// 当桶中节点数不小于该值时树化
// 树节点大小是常规节点两倍,应该在有足够的节点后树化
static final int TREEIFY_THRESHOLD = 8;
// 当桶中节点数小于该值时链表化
// 不设为TREEIFY_THRESHOLD,避免抖动
static final int UNTREEIFY_THRESHOLD = 6;
// 当容量不小于该值时才会树化,否则会优先扩容
// 应当至少为 4 * TREEIFY_THRESHOLD
static final int MIN_TREEIFY_CAPACITY = 64;
// 初次使用时初始化,长度为 2 的幂次
transient Node<K,V>[] table;
// entrySet() 缓存
transient Set<Map.Entry<K,V>> entrySet;
// 改变次数,每次修改都会增加
transient int modCount;
2. 构造函数
public HashMap(int initialCapacity, float loadFactor) {
if (initialCapacity < 0)
throw new IllegalArgumentException("Illegal initial capacity: " +
initialCapacity);
if (initialCapacity > MAXIMUM_CAPACITY)
initialCapacity = MAXIMUM_CAPACITY;
if (loadFactor <= 0 || Float.isNaN(loadFactor))
throw new IllegalArgumentException("Illegal load factor: " +
loadFactor);
this.loadFactor = loadFactor;
// tableSizeFor会获得不小于当前数字的最小的2的幂次
this.threshold = tableSizeFor(initialCapacity);
}
public HashMap(int initialCapacity) {
this(initialCapacity, DEFAULT_LOAD_FACTOR);
}
public HashMap() {
this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
}
public HashMap(Map<? extends K, ? extends V> m) {
this.loadFactor = DEFAULT_LOAD_FACTOR;
putMapEntries(m, false);
}
/** 计算大于等于输入参数的最小的 2 的幂次 */
static final int tableSizeFor(int cap) {
int n = cap - 1;
n |= n >>> 1;
n |= n >>> 2;
n |= n >>> 4;
n |= n >>> 8;
n |= n >>> 16;
return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
}
3. 内部类
static class Node<K,V> implements Map.Entry<K,V> {
final int hash;
final K key;
V value;
Node<K,V> next;
public final int hashCode() { return Objects.hashCode(key) ^ Objects.hashCode(value); }
}
4. 插入
// 高低16位异或
static final int hash(Object key) {
int h;
return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}
public V put(K key, V value) { return putVal(hash(key), key, value, false, true); }
// @param onlyIfAbsent 如果为true,则不会改变已存在的value
// @param evict 如果为false,说明处于构造模式
final V putVal(int hash, K key, V value, boolean onlyIfAbsent, boolean evict) {
Node<K,V>[] tab; Node<K,V> p; int n, i;
if ((tab = table) == null || (n = tab.length) == 0)
// 表为空,创建表
n = (tab = resize()).length;
if ((p = tab[i = (n - 1) & hash]) == null)
// 对应位置为空,直接创建节点
tab[i] = newNode(hash, key, value, null);
// 碰撞处理
else {
Node<K,V> e; K k;
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
// 节点key相同
e = p;
else if (p instanceof TreeNode)
// 树状节点,向树中插入
e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
else {
for (int binCount = 0; ; ++binCount) {
if ((e = p.next) == null) {
// 尾插法
p.next = newNode(hash, key, value, null);
if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
// 超过阈值,树化
treeifyBin(tab, hash);
break;
}
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
// 节点key相同
break;
p = e;
}
}
if (e != null) { // existing mapping for key
V oldValue = e.value;
// 更新值
if (!onlyIfAbsent || oldValue == null)
e.value = value;
afterNodeAccess(e);
return oldValue;
}
}
++modCount;
if (++size > threshold)
// 超过阈值,扩容
resize();
afterNodeInsertion(evict);
return null;
}
// 扩容方法
final Node<K,V>[] resize() {
Node<K,V>[] oldTab = table;
int oldCap = (oldTab == null) ? 0 : oldTab.length;
int oldThr = threshold;
int newCap, newThr = 0;
if (oldCap > 0) {
if (oldCap >= MAXIMUM_CAPACITY) {
threshold = Integer.MAX_VALUE;
return oldTab;
}
else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
oldCap >= DEFAULT_INITIAL_CAPACITY)
// 两倍扩容
newThr = oldThr << 1; // double threshold
}
else if (oldThr > 0) // initial capacity was placed in threshold
newCap = oldThr;
else { // zero initial threshold signifies using defaults
newCap = DEFAULT_INITIAL_CAPACITY;
newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
}
if (newThr == 0) {
float ft = (float)newCap * loadFactor;
newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
(int)ft : Integer.MAX_VALUE);
}
// 设置新阈值并创建新表
threshold = newThr;
@SuppressWarnings({"rawtypes","unchecked"})
Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
table = newTab;
if (oldTab != null) {
// 迁移节点
for (int j = 0; j < oldCap; ++j) {
Node<K,V> e;
if ((e = oldTab[j]) != null) {
oldTab[j] = null;
if (e.next == null)
// 没有碰撞
newTab[e.hash & (newCap - 1)] = e;
else if (e instanceof TreeNode)
// 树分裂,这一步会判断是否链表化
((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
else { // preserve order
// 链表分裂
Node<K,V> loHead = null, loTail = null;
Node<K,V> hiHead = null, hiTail = null;
Node<K,V> next;
do {
next = e.next;
if ((e.hash & oldCap) == 0) {
if (loTail == null)
loHead = e;
else
loTail.next = e;
loTail = e;
}
else {
if (hiTail == null)
hiHead = e;
else
hiTail.next = e;
hiTail = e;
}
} while ((e = next) != null);
if (loTail != null) {
loTail.next = null;
newTab[j] = loHead;
}
if (hiTail != null) {
hiTail.next = null;
newTab[j + oldCap] = hiHead;
}
}
}
}
}
return newTab;
}
5. 删除
public V remove(Object key) {
Node<K,V> e;
return (e = removeNode(hash(key), key, null, false, true)) == null ?
null : e.value;
}
// @param value 值
// @param matchValue true表示只有value相同时才会移除
// @param movable false则移除时不会移动其他节点
final Node<K,V> removeNode(int hash, Object key, Object value,
boolean matchValue, boolean movable) {
Node<K,V>[] tab; Node<K,V> p; int n, index;
// 表存在、节点存在
if ((tab = table) != null && (n = tab.length) > 0 &&
(p = tab[index = (n - 1) & hash]) != null) {
Node<K,V> node = null, e; K k; V v;
// 查找节点
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
node = p;
else if ((e = p.next) != null) {
if (p instanceof TreeNode)
node = ((TreeNode<K,V>)p).getTreeNode(hash, key);
else {
do {
if (e.hash == hash &&
((k = e.key) == key ||
(key != null && key.equals(k)))) {
node = e;
break;
}
p = e;
} while ((e = e.next) != null);
}
}
// 找到对应节点
if (node != null && (!matchValue || (v = node.value) == value ||
(value != null && value.equals(v)))) {
if (node instanceof TreeNode)
// 树移除节点,这一步如果红黑树太小会链表化
((TreeNode<K,V>)node).removeTreeNode(this, tab, movable);
else if (node == p)
tab[index] = node.next;
else
p.next = node.next;
++modCount;
--size;
afterNodeRemoval(node);
return node;
}
}
return null;
}
6. 区别
JDK1.7
使用头插法,JDK1.8
使用尾插法,避免多线程同时扩容时的死循环;JDK1.7
是先扩容后插入的,JDK1.8
反过来,避免无效扩容;JDK1.7
只有数组+链表,JDK1.8
引入红黑树;